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Abstract. The global annual mean atmospheric CO2 growth rate in 2023 was one of the highest since records began in 1958,
comparable to values recorded during previous major El Nifio events. We do not fully understand this anomalous growth
rate, although a recent study highlighted a role for boreal North American forest fires. We use a Bayesian inverse method to
interpret global-scale atmospheric CO2 data from the NASA Orbiting Carbon Observatory. The resulting a posteriori CO2
flux estimates reveal that from 2022 to 2023 the biggest changes in CO: fluxes of net biosphere exchange (NBE) — for which
positive values denote a flux to the atmosphere — were over the land tropics. We find that the largest NBE increase is over
eastern Brazil, with small increases over southern Africa and Southeast Asia. We also find significant increases over
southeast Australia, Alaska, and western Russia. A large NBE increase over boreal North America, due to fires, is driven by
our a priori inventory, informed by independent data. The largest NBE reductions are over western Europe, USA, and
central Canada. Our NBE estimates are consistent with gross primary production estimates inferred from satellite
observations of solar induced fluorescence and with satellite observations of vegetation greenness. We find that warmer
temperatures in 2023 explain most of the NBE change over eastern Brazil, with hydrological changes more important
elsewhere across the tropics. Our results suggest that ongoing environmental degradation of the Amazon is now playing a

substantial role in increasing the global atmospheric CO: growth rate.
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1 Introduction

The annual mean growth rate of atmospheric carbon dioxide (CO2) is widely used as a zeroth order metric to determine the
health of our planet. Even from the first few years” worth of data collected at Mauna Loa in the late 1950s it was plain to see
that a) land vegetation imposed a large seasonal cycle on atmospheric CO2 via photosynthesis and respiration, and b)
combustion of fossil fuels led to a planetary scale impact on the atmosphere (Keeling, 1960; Keeling et al., 1976). Changes
in the annual accumulation of atmospheric COz (growth rate), the magnitude and phase of the seasonal cycle, and how they
vary geographically, provide important clues about economic activity and the health of the land biosphere (Keeling et al.,
1996; Graven et al., 2013; Barlow et al., 2015). These changes are inextricably linked, e.g., elevated uptake by the land
biosphere will influence the annual growth rate as well as the seasonal cycle (e.g., Ainsworth and Rogers, 2007). On a global
scale, using mass balance arguments, we know that only about 44% of fossil fuel emissions of COz remain in the atmosphere
(the airborne fraction) (Bennett et al., 2024) with the land biosphere and oceans absorbing the other 56%, approximately
equally but with substantial year to year changes (Friedlingstein et al., 2023). The quasi-stability of the airborne fraction
suggests that the land biosphere and the oceans absorb a progressively larger absolute amount of CO:z from the atmosphere.
We have an incomplete understanding of where this carbon is being absorbed and the stability of the resulting accumulated
terrestrial carbon reservoirs against future changes in climate, e.g. Armstrong McKay et al., (2022). Consequently, years in
which there are anomalously large annual mean CO: growth rates prompt concern from the scientific community. This
concern grows when state-of-the-art process-based land biosphere models cannot forecast or explain these anomalies (Kondo

etal., 2020).

Figure 1 shows the annual mean CO: growth rates reported by NOAA on a global scale, determined by combining data
collected at sites across the globe, and from Mauna Loa in Hawaii (19.5°N, 155.6°W), USA, a site typically assumed to be
representative of changes in the northern hemisphere carbon cycle (Buermann et al., 2007). The global picture shows that
2023 (Figure 1a) had one of the largest CO2 growth rates on record, typically associated with the El Nifio phase of ENSO,
e.g., 1986, 1997/1998, and 2015/2016. What is also evident is a progressive increase in the annual growth rates from the
1950s (Figure 1c). Even anomalous values recorded in the last quarter of the 20" century are close to the median value from
the 21* century (Figure 1¢). The corresponding data collected at Mauna Loa shows a slightly different picture for the annual
COz growth rate (Figure 1b). At this site, the growth rate in 2023 was the largest on record, exceeding the past peak growth
during 1997/1998 EI Niflo, attributed to extensive burning of peat over Southeast Asia (Page et al., 2002), and the 2015/2016
El Nifio (Liu et al., 2017). At Mauna Loa, progressive changes in the growth rates are slightly more exaggerated than global

mean values (Figure 1b,d), suggesting a larger role for tropical latitudes.

Data-driven top-down flux inversions allow us to attribute these observed changes in the atmospheric CO2 growth rate to

regional changes in surface carbon fluxes. Estimating regional carbon fluxes from atmospheric data requires an atmospheric
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transport model that describes the physical relationship between surface CO: fluxes and the resulting atmospheric
distribution of COz, a priori estimates of the distribution and magnitude of fluxes, and a Bayesian inference method that fits
this model to the data accounting for model and data uncertainties (Tans et al., 1990; Baker et al., 2006; Gurney et al., 2002,
2004). Using an atmospheric transport model introduces additional errors (Schuh et al., 2019; Oda et al., 2023) but it remains
an essential tool for interpreting the atmospheric data. Satellite observations of atmospheric COz have challenged current
understanding of the carbon cycle (Liu et al., 2017; Chatterjee et al., 2017; Patra et al., 2017; Palmer et al., 2019; Wang et
al., 2020; Basso et al., 2023; Hugelius et al., 2024; O’Sullivan et al., 2024; Liu et al., 2024). They have primarily achieved
this by collecting data over geographical regions that are not well covered by ground-based networks, particularly over the
land tropics. These datasets are typically available with a time lag of only a few months, enabling us to explain the reasons

behind anomalous annual COz growth rates within a year of them happening.

To interpret recent annual changes in the CO2 growth rate, we use the global 3-D GEOS-Chem atmospheric transport model
and an ensemble Kalman filter to adjust our a priori distribution of COz flux estimates to fit in sifu and satellite observations
of atmospheric CO2. These methods and data are described in the next section. We report our results in section 3 and

conclude our study in section 4.

2 Data and Methods

Here, we describe the modelling framework we use to infer a posteriori spatial distributions of CO> fluxes from atmospheric
data and a priori inventories flux estimates, the atmospheric data, and the auxiliary atmospheric and land surface we use to

evaluate the a posteriori flux estimates.

2.1 Inversion Framework

We use the GEOS-Chem global 3-D chemistry transport model of version 13.4 to provide the relationship between the
surface fluxes and changes in atmospheric CO2. For the experiments we report, we run the model at a horizontal resolution
of 2° (latitude) X 2.5° (longitude), driven by MERRA2 meteorological reanalyses from the Global Modeling and
Assimilation Office (GMA) based at NASA Goddard Space Flight Center (GSFC).

We use a priori COz flux inventories, which include year-specific monthly biomass burning emission (GFEDv4.1;
Randerson et al., 2017), and year-specific monthly anthropogenic emissions (ODIAC; Oda et al.,, 2018; Oda and
Maksyutov, 2021). The anthropogenic emission estimates were extended to 2023 under the assumption that these emissions
from the southern hemisphere remain stable between 2022 and 2023 but increased by 1.4% over the northern hemisphere

based on data reported in the 2024 Statistical Review of World Energy by the Energy Institute. We use year-specific
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terrestrial biosphere fluxes with a temporal resolution of three hours (CASA; Olsen and Randerson, 2004) up to the end of

2018, and repeat values for 2018 in subsequent years. We use monthly climatological ocean fluxes (Takahashi et al., 2009).

We use an established EnKF framework (Feng et al., 2009, 2017; Palmer et al., 2019) to estimate surface CO: fluxes from
atmospheric CO: data collected by a satellite and a global in situ ground-based observation network, 2014—2023,
inclusively. We define our land sub-regions by further dividing each of the 11 TransCom-3 land regions (Gurney et al.,
2002) into 30 nearly equal sub-regions, with the exception for temperate Eurasia that has been divided into 56 sub-regions,
due to its large landmass. We divide the 11 TransCom-3 ocean regions into 132 sub-regions. Our state vector includes
monthly scaling factors for 488 regional pulse-like basis functions that describe natural CO: fluxes, including 356 land
regions and 132 oceanic regions (Figure Al). The inversion framework and the experiments we report here closely follow
our previous work (Palmer et al., 2019; Feng et al., 2022; Oda et al., 2023; Feng et al., 2023), and we assimilate in situ data
and column averaged CO:z dry-air mole fraction (Xco2) retrievals from the NASA Orbiting Carbon Observatory (OCO-2), as

described below.

2.2 In situ and OCO-2 atmospheric CO: data

We use version vl Ir of OCO-2 retrievals of column average dry air mole fraction (XCO2) from the JPL-ACOS team (Taylor
et al., 2023). We only assimilate the nadir and glint observations over land, considering possible bias between the land and
ocean XCO?2 data. The consequent poor observational coverage over the ocean could result in the disaggregation of the land
and ocean CO: fluxes being more sensitive to the a priori ocean flux inventory. Through sensitivity studies we find that our
land CO: flux anomalies are not significantly sensitive to the to the a priori ocean flux inventory (not shown) or to the
absence of OCO-2 glint data (Figure A2). To reduce the computational costs and error correlations, we thinned the OCO-2

observations to ensure a minimal time interval of 10 s.

We also assimilate in situ measurements of CO2 mole fraction data from a subset of 113 sites (Figure Al) included in the
NOAA GLOBALVIEWPIlus 8.0 data product (Schuldt et al., 2022), incorporating data from the Integrated Carbon
Observation System (ICOS Rl et al., 2024).

2.3 GOSIF Gross Primary Productivity

We use a global gross primary production (GPP) product that is based on OCO-2 solar induced fluorescence (GOSIF) and
linear relationships between SIF and GPP (Li and Xiao, 2019). We chose this data product, available globally a spatial
resolution of 0.05° and a temporal resolution of eight days, because it is close to the median of observation-derived GPP
estimates (Li and Xiao, 2019) and is available over our study period. The mean annual global total (2000-2023) is 135.5 +
8.8 Pg C yr!, with a significant upward trend over the northern hemisphere. Comparisons show that this GPP data product is

highly correlated (R?>=0.74) with GPP measurements collected at 91 eddy covariance flux sites across the globe. Here, we

4
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use the monthly mean dataset and re-grid it to a regular one-degree grid to compare it with other variables including our a

posteriori COz flux estimates.

2.4 Gravity Recovery And Climate Experiment data

The GRACE space mission was jointly developed by NASA and DLR (German Space Agency) and launched into space in
2002. It measures temporal variations of the Earth’s gravity field by tracking, using a K-band ranging system, the inter-
satellite range and range rate between two coplanar, low altitude satellites (Tapley et al., 2004). The GRACE Science Data
System uses these measurements, along with ancillary data, to estimate monthly (or sub-monthly) time series of global
Earth’s gravity fields (Bettadpur, 2007; Flechtner, 2007). Here, we use the NASA GRCTellus GRACE land product
(RL06.2) for monthly total water storage (liquid water equivalent depth) at 1° x 1° global grids from January 2014 through
March 2024 (http://grace.jpl.nasa.gov/). We have used these data in our previous studies, e.g., Feng et al., (2022, 2023).

2.5 NASA Meteorological Reanalyses

We use surface temperature (TS), specific humidity (SH), soil moisture in the top 0—10 cm (ground wetness, WET) datasets
from MERRA?2 developed by the GMAO at NASA GSFC to study environmental changes from 2010 to 2023. We calculate
the vapour pressure deficit (VPD) from the 10-m MERRA2 temperature, and specific humidity following Fang et al., (2022).
We have used these reanalyses data previously to study a posteriori COz fluxes (Palmer et al., 2019) and methane emissions

(Feng et al., 2022, 2023).

3 Results

Figure 2 shows a posteriori net fluxes of CO2 on a global scale, and across southern, tropical, and northern latitudes to
provide some broad geographical context. These values are broadly consistent with annual values for the atmospheric CO2
growth rates — an important zeroth order assessment of our a posteriori net fluxes. Our value for 2023 inferred from OCO-2
data is 3.0 ppm/yr, about 0.2 ppm/yr higher than the value inferred from NOAA CO: mole fraction data. Building on
ongoing our model evaluation, e.g., Deng et al., (2024) and Friedlingstein et al., (2024), we find that the a posteriori CO:
concentrations for 2023 are generally within 0.5 ppm of data collected by spectrometers from the Total Carbon Column

Observing Network (Wunch et al., 2011), with a standard deviation smaller than1.2 ppm.

As expected, the largest contribution of the global net flux originates from the northern hemisphere (Figure 2d), where there
is a superposition of boreal and midlatitude ecosystems that contribute to the global uptake of CO2 and large cities and other
emission hotspots. At these latitudes, the year-to-year variations are comparatively small, limited to << 1PgC, and in the last
two years since the 2021 peak there has been a small decrease in net emissions to pre-pandemic values (3.38—3.96 PgClyr,

2014—2020). Over our study, these changes have typically represented 62—92% of the global budget, with the smallest

5
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values typically during El Nifio years when the tropics plays a larger role. The tropics show large year-to-year changes over
our study period (Figure 2¢) with a large peak in emissions that we have not observed since the 2015/2016 El Nifio. We find
the large increase in net COz fluxes predominately originates from the tropics, representing 21% in 2022 and 38% in 2023.
Our calculations suggest that this anomalous increase in tropical CO:z flux in 2023 is explained mainly by an increased CO2
flux over East Amazon (Figure A3). The net uptake in the southern hemisphere (Figure 2b) also shows a similar but small
year-to-year change with the highest uptake in the last years, consequently compensating for emissions elsewhere on the
globe. The 16% decrease in net uptake in 2023 reduced the influence of this region on the global net flux, reinforcing the

role of the tropics on the global scale.

Figure 3 shows annual spatial distributions of the annual change in the net biosphere exchange (NBE) — the net COz flux
minus the a priori fossil fuel emissions removed — from 2022 to 2023 and as a comparison from 2014 to 2015 when there
was a comparably largest change in the growth rate associated with the 2015/2015 El Nifio. This widely used subtraction
approach to determine NBE implicitly assumes perfect knowledge of fossil fuel combustion of COs, but we acknowledge
that making that assumption has implications for NBE estimates, although this is minimal over the tropics where
anthropogenic emissions are comparatively small (Oda et al., 2023). A positive annual change in NBE represents a larger net
amount of COxz to the atmosphere. We find that the largest positive increases in NBE are found across the tropics, with peak
values over eastern Brazil, southern Africa, eastern and southern China, mainland and maritime Southeast Asia, and
Southeast Australia. The emission hotspot over western Canada is from wildfires (Byrne et al., 2024) but our a posteriori
feature is almost exclusively from the a priori inventory, determined by independent satellite data, because large aerosol
optical depths over and downwind of these extensive fires where OCO-2 data are unreliable; Byrne et al., (2024) inferred
carbon emissions from these fires using satellite observations of carbon monoxide. We also find large positive increases in
MBE over Alaska and Russia. Regions with elevated uptake in 2023 are limited to the US and central Canada, mainland
Europe, with weaker uptake over Siberia, Turkey, and some parts of East Africa. In comparison, the tropics in 2015 shows
regions with positive and negative changes in NBE over tropical South America, a large increase over East and Central
Africa (Palmer et al., 2019), with some of the largest increases over mainland and maritime Southeast Asia, as we also found
in 2023. Elevated uptake was mainly confined to boreal latitudes. These changes in a posteriori fluxes are broadly consistent
with independent estimates of GPP changes inferred from the OCO-2 SIF data product and from vegetation greenness,
providing us with some confidence that our estimated fluxes are physically plausible. The annual mean budgets for
individual geographical regions where we see the largest changes in NBE (rectangles in Figure 3a), show that East Amazon
is almost exclusively responsible for the large increase in pan-tropical COz flux in 2023, with a smaller contribution from

Southeast Asia.

Figure 4 shows the geographical distribution of changes in parameters that describe large-scale changes CO: fluxes —

temperature and water availability. Geographical locations where we report the largest increases in NBE (and largest

6
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reductions in GPP) in 2023, e.g., Brazil, southern Africa, southeast Australia, are coincident with locations where we saw
some of the largest increases in temperature, VPD, and the largest reductions in LWE. And where we reported the largest
decreases in NBE (and largest increases in GPP), e.g. parts of the contiguous US and central Canada, we saw cooler
temperatures and lower VPDs, and small increases in LWE. We find a similar level of consistency between the data products

and meteorological reanalyses in 2015.

Figure 5 describes these relationships more quantitatively by using linear and quadratic multivariate fits of MERRA2
rainfall, temperature, and soil moisture anomalies to our a posteriori NBE anomalies over the geographical regions
highlighted in Figure 3a. In sensitivity calculations, we find that changes in VPD or LWE do not improve the fits to NBE
anomalies. We find the quadratic fit marginally outperforms the linear fit but for simplicity of interpretation we use the linear
fits, with both models being significantly significant, with p values < 0.001. The models capture most of the NBE changes,
with the notable exception of mid 2022 when our NBE fluxes shows a sharp increase that is not explained by temperature or
water. Based on the normalized linear fitting coefficients, we find for these fits that changes in temperature explain most of
the NBE changes we observe over East Amazon (Table Al), but soil moisture changes are more important over Northern
tropical Africa, southern Africa, and tropical Asia. Rainfall changes are more important over Southeast Asia. Independent
GOSIF GPP estimates determined from satellite SIF observations (Li and Xiao, 2019) show a significant decrease from 2022
to 2023 over tropical regions, particularly over eastern Amazonia, southern Africa, tropical Asia and Southeast Asia (Figure
A4), consistent with the increase we report for our a posteriori NBE estimates (Figure 5). More generally, we find that
changes in GOSIF GPP are better than other individual predictors at describing our a posteriori CO2 flux anomalies over

Tropical Asia, Southeast Asia, and southern Africa (Table A2), 2014—2023, inclusively.

4 Concluding Remarks

We reported regional changes in the net biospheric exchange (NBE) of CO: inferred from OCO-2 retrievals of XCO2 from
2022 and 2023 to examine the origin of the large atmospheric growth rate reported for that period. Positive values of NBE
denote net CO: fluxes to the atmosphere. We find that most of the increase in atmospheric COz in 2023 is due to increased
NBE over the land tropics, supported by a modest reduction in uptake in southern extratropics, in agreement with a recent
study (Gui et al., 2024). Further examination revealed foci of increased NBE were over eastern Brazil, southern Africa,
eastern and southern China, mainland and maritime Southeast Asia, and Southeast Australia. Extensive wildfires over
western Canada during boreal summer months also substantially contributed to the atmospheric CO2 growth rate in 2023
(Byrne et al., 2024), but in terms of atmospheric CO: this information is exclusively from the a priori inventory that is
determined by independent satellite data. We also find increased uptake (lower NBE values) over the US and central Canada,
mainland Europe, with weaker uptake over Siberia, Turkey, and some parts of East Africa. These large-scale patterns of

NBE are consistent with data-driven estimates of gross primary production and vegetation greenness, and with changes in
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surface temperature, rainfall, and surface water. We find that warmer temperatures in 2023 explain most of the change in
NBE over eastern Brazil, with changes in hydrological quantities — rainfall or soil moisture — more important elsewhere
across the tropics. Additional knowledge is needed to help reconcile CO: flux estimates from land biosphere process-based
models and those inferred from inversions (Kondo et al., 2020). Our quantitative exploration of the relationships between our
a posteriori NBE anomalies and changes in environmental parameter helps to interpret observed changes in atmospheric

COz but can also help to evaluate and improve process-based land biosphere models.

Our analysis has focused on 2023, but it is important to put this one year into a broader historical context, at least in the past
decade when we have seen a marked increase in atmospheric growth rates of atmospheric COz (Figure 1). Some of this
increase can be explained by changes in fossil fuel combustion and other forms of human activity, but the largest spikes in
atmospheric CO2 growth rates coincide with years when there is a strong El Nifio event (Figure 1), primarily associated with
large-scale perturbations to the hydrological cycle that impact tropical ecosystems. In strong El Nifio years, such as
2015/2016, widespread droughts reported across the tropics (Jiménez-Mufioz et al., 2016) resulted in a notable increase in
fires (Liu et al., 2017) and can in some ecosystems lead to a widespread loss of tree density and a change the floristic

composition (Prestes et al., 2024).

In 2023, the multivariate El Nifilo Southern Oscillation index, indicative of El Nifio and La Nifa strength, in 2023 was
approximately half the value of recent El Nifio events, such as 2015/2016. There are distinct differences in the spatial
patterns of rainfall, atmospheric aridity (given by vapour pressure deficit), and soil moisture over the tropics (Figure 4). But
the loss of carbon sequestration in 2023 and 2015/2016 was comparable. Our findings highlight the complex response of the
tropical biosphere to environmental change, reflecting differences in the sensitivity and vulnerability of plants to localized
droughts and increasing surface temperature (Table Al). Further quantifying these different sensitivities using independent
in situ ecological observations will significantly improve our ability to model important biospheric processes in terms of

atmospheric-biosphere carbon exchange, e.g., Liu et al., (2024).

Our interpretation of the OCO-2 column data suggests that the reduced uptake of COz from tropical ecosystems played a key
role in determining the anomalously large atmospheric CO2 growth rates in 2023. Our work is largely consistent with a
recent independent study (Gui et al., 2024) that used the same OCO-2 data, but interpreted them with an independent
atmospheric transport model, driven by different fossil fuel inventories and by Al-based dynamic global vegetation models.
They also used a different inverse method approach. However, our results and those reported by Gui et al., (2024) are
inconsistent with another independent study (Ke et al., 2024), based on a set of land biosphere models and an inversion
experiment from the Copernicus Atmosphere Monitoring Service (CAMS). They significantly differ in the spatial patterns of
carbon release and uptake. Resolving these discrepancies is beyond the scope of this work, but ultimately they do need to be

resolved if we are to use these models to predict how global ecosystems will respond to a warming climate and an
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accelerated hydrological cycle, and the subsequent impacts on the carbon cycle (Armstrong McKay et al., 2022). If our main
result is accurate — a moderate El Niflo event has led to a significant reduction in carbon uptake by the tropical land
biosphere, which has experienced extensive drought — we might be observing the beginning of a decline in the ability of
tropical ecosystems to absorb carbon. The long-term nature of this situation is unclear without further data, although the
preliminary estimate of the 2024 atmospheric CO2 growth rate of 3.75+0.08 ppm/yr is unprecedented since these records
began in the late 1950s (https:/gml.noaa.gov/ccgg/trends/gl gr.html; last access: 15" April 2025). A coordinated
measurement campaign is urgently needed to document how tropical ecosystems are changing, whether these changes
compromise the future ability to absorb and store carbon, and whether prolonged drought will substantially delay any

ecosystem recovery.

Regularly reporting regional CO: fluxes with minimal delay, and interpreting them using auxiliary data, e.g., related to fire
(such as the extensive North American boreal forest fires in 2023) and hydrology, are enabled by massive-scale international
investment in satellite instruments that complement the detailed information provided by ground-based measurement
networks. Collectively, these efforts provide vast volumes of information about the state of the planet at a time when we are
observing unprecedented environmental changes. These data and the analysis tools needed to infer CO> fluxes collectively
represent an invaluable scientific resource that must be used to deliver frequent actionable information for policy makers.
The agreement and divergence between our results and those from other independent studies underscore the efficacy and the

shortcomings of the prevailing frameworks.

Code Availability
The community-led GEOS-Chem model of atmospheric chemistry and transport model is maintained centrally by Harvard

University (https://geoschem.github.io/, last access: 5 May 2025), and is available on request. The ensemble Kalman filter

code is publicly available as PyOSSE (https://www.nceo.ac.uk/data-facilities/datasets-tools/?dataset_type=tools, NCEO, last
access: 5 May 2025).

Data Availability

The L2 column carbon dioxide data from OCO-2 and OCO-3 are available from the Goddard Earth Sciences Data and
Information Services Centre (https://doi.org/10.5067/E4E140XDMPO2; last access 5 May 2025). The GOSIF GPP is
available for public from https://data.globalecology.unh.edu/data/GOSIF-GPP_v2 (last access 5 May 2025). The MODIS

EVI of version v06.1 is available from https://lpdaac.usgs.gov/products/myd13a3v061/ (last access 5 May 2025).
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Figure 1 Atmospheric growth rates of CO: (blue) and their annual change (black). a Global mean values. b Values
determined from Mauna Loa, Hawaii CO: mole fraction data. Data collected by NOAA and available at

https://gml.noaa.gov/ccgg/trends/gl gr.html. ¢ Multi-decadal changes in the probability density of global mean annual mean

growth rates and d as panel c but using data from Mauna Loa. Blue and black horizontal dashed lines denote the 1-c and 2-c

525 values for the annual atmospheric CO2 growth and its annual change, respectively.
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Figure 2 Annual mean a posteriori COz flux estimates inferred from OCO-2 data for the globe, the southern extratropics, the

tropics, and the northern extratropics. The thin black vertical lines denote the 1-sigma values about the annual mean values.

530 The red lines in panels b-d denote the percentage contribution to the global net fluxes.
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Figure 3 Differences in a posteriori COz flux estimates inferred from OCO-2 data (top), gross primary production (GPP)
estimated from OCO-2 SIF data (middle), and elevated vegetation indices (EVI) inferred from MODIS data (bottom) for
535 2022-2023 (left panels) and 2014-2015 (right panels). Rectangles shown in panel a describe the geographical regions we

focus on for our multivariate fits.
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Figure 4 Differences in surface temperature (Temp; top row), precipitation (Prec; second row), soil moisture (SM; third
row), vapour pressure deficit (VPD; fourth row), derived from soil moisture, based on MERRA?2 reanalyses data products

540 from NASA GSFC GMAO, and liquid water equivalent (LWE; bottom row) from the GRACE satellites for 2023 minus
2022 (left panels) and 2015 minus 2014 (right panels).
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Figure 5 Regional linear (black) and quadratic (blue) multivariate fits of NBE anomalies (red) inferred from OCO-2 data
using independent estimates of rainfall, surface temperature, and soil moisture from MERRA reanalyses data products from
545 NASA GSFC GMAO. Regional definitions, defined in panel a of Figure 3, include East Amazon, tropical East Africa,
southern Africa, tropical Asian, and Southeast Asia. Number shown inset of each panel include the Pearson correlation

coefficient for each fit, and the p-value that corresponds to both fits.
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550 Figure Al a The distribution of 488 sub-regions — including 356 land regions and 132 oceanic regions — for which we
report monthly a posteriori CO2 flux estimates inferred from OCO-2 data. b The geographical locations of the ground-based

measurements of CO2 mole fraction.
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Figure A2 As Figure 5, but for NBE anomalies inferred using OCO-2 land nadir, land glint, and ocean glint data, and in situ
555 data.
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Figure A3 As Figure 2 but for a posteriori CO: flux estimates across the tropics. Regions are as defined by the rectangles

shown in Figure 3a. Percentage values higher than 100% are a consequence of some regional fluxes being negative.
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E. Amazon NAf SAf Tr.Asia SE.Asia
Rain -0.05 -0.21 0.18 0.11 -0.42
Surface 0.40 0.09 0.17 0.06 -0.03
temperature
Soil moisture -0.29 -0.51 -0.44 -0.84 -0.11

Table A1 Normalized linear fitting coefficients for the independent variables of the MERRAZ2 rain, surface temperature, and

soil moisture used to fit the NBE anomalies (Figure 5) for the regions defined in Figure 3a. The largest coefficient for each

region is highlighted.
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Region Rain Temp Soil Moisture VPD GOSIF GPP
E.Amazon <0.01 0.34 0.31 0.01 0.02
NAf <0.01 0.06 0.51 0.24 0.03
SAf <0.01 0.06 0.13 0.05 0.66
Tr. Asia <0.01 0.01 0.32 0.01 0.44
SE.Asia <0.01 0.02 0.07 0.15 0.62

570 Table A2 Permutation importance for using variables of the MERRA?2 rain, surface temperature, and soil moisture, VPD,
and GOSIF GPP to fit the NBE anomalies (Figure 5) for the regions defined in Figure 3a. The largest contributor for each
region is highlighted.
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